3.6.40 \(\int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx\) [540]

3.6.40.1 Optimal result
3.6.40.2 Mathematica [A] (verified)
3.6.40.3 Rubi [A] (verified)
3.6.40.4 Maple [B] (verified)
3.6.40.5 Fricas [B] (verification not implemented)
3.6.40.6 Sympy [F]
3.6.40.7 Maxima [F]
3.6.40.8 Giac [F]
3.6.40.9 Mupad [F(-1)]

3.6.40.1 Optimal result

Integrand size = 38, antiderivative size = 192 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=-\frac {(-1)^{3/4} \sqrt {a} (2 A-i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {(1+i) \sqrt {a} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}+\frac {B \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\cot (c+d x)}} \]

output
-(-1)^(3/4)*(2*A-I*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*ta 
n(d*x+c))^(1/2))*a^(1/2)*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d-(1+I)*(A-I*B) 
*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*a^(1/2)* 
cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d+B*(a+I*a*tan(d*x+c))^(1/2)/d/cot(d*x+c 
)^(1/2)
 
3.6.40.2 Mathematica [A] (verified)

Time = 3.75 (sec) , antiderivative size = 233, normalized size of antiderivative = 1.21 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}+\frac {-\frac {i \sqrt {2} \left (\frac {1}{2} a^2 (2 A-i B)-\frac {1}{2} i a^2 B\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{d \sqrt {i a \tan (c+d x)}}+\frac {\sqrt [4]{-1} a^2 (2 A-i B) \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {1+i \tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}}{a}\right ) \]

input
Integrate[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Sqrt[Cot[c + d 
*x]],x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((B*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a* 
Tan[c + d*x]])/d + (((-I)*Sqrt[2]*((a^2*(2*A - I*B))/2 - (I/2)*a^2*B)*ArcT 
anh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Tan[ 
c + d*x]])/(d*Sqrt[I*a*Tan[c + d*x]]) + ((-1)^(1/4)*a^2*(2*A - I*B)*ArcSin 
h[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[1 + I*Tan[c + d*x]])/(d*Sqrt[a + I*a 
*Tan[c + d*x]]))/a)
 
3.6.40.3 Rubi [A] (verified)

Time = 1.11 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.93, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.342, Rules used = {3042, 4729, 3042, 4080, 27, 3042, 4084, 3042, 4027, 218, 4082, 65, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a} (A+B \tan (c+d x))dx\)

\(\Big \downarrow \) 4080

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int -\frac {\sqrt {i \tan (c+d x) a+a} (a B-a (2 A-i B) \tan (c+d x))}{2 \sqrt {\tan (c+d x)}}dx}{a}+\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a B-a (2 A-i B) \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\int \frac {\sqrt {i \tan (c+d x) a+a} (a B-a (2 A-i B) \tan (c+d x))}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )\)

\(\Big \downarrow \) 4084

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-(B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {2 a (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-(B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {-\frac {4 i a^3 (B+i A) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-(B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(2-2 i) a^{3/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-(B+2 i A) \int \frac {(a-i a \tan (c+d x)) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )\)

\(\Big \downarrow \) 4082

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(2-2 i) a^{3/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {a^2 (B+2 i A) \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {i \tan (c+d x) a+a}}d\tan (c+d x)}{d}}{2 a}\right )\)

\(\Big \downarrow \) 65

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {(2-2 i) a^{3/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 (B+2 i A) \int \frac {1}{1-\frac {i a \tan (c+d x)}{i \tan (c+d x) a+a}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}}{2 a}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {B \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}-\frac {\frac {2 \sqrt [4]{-1} a^{3/2} (B+2 i A) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {(2-2 i) a^{3/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}}{2 a}\right )\)

input
Int[(Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]))/Sqrt[Cot[c + d*x]],x 
]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(-1/2*((2*(-1)^(1/4)*a^(3/2)*((2*I)* 
A + B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + 
 d*x]]])/d + ((2 - 2*I)*a^(3/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Ta 
n[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d)/a + (B*Sqrt[Tan[c + d*x]]*Sqr 
t[a + I*a*Tan[c + d*x]])/d)
 

3.6.40.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 65
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2   Sub 
st[Int[1/(b - d*x^2), x], x, Sqrt[b*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d 
}, x] &&  !GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4080
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] + Simp[ 
1/(a*(m + n))   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Sim 
p[a*A*c*(m + n) - B*(b*c*m + a*d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*T 
an[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]
 

rule 4082
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(B/f)   Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x]], 
x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 + b^2, 0] && EqQ[A*b + a*B, 0]
 

rule 4084
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b + a*B)/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] 
 - Simp[B/b   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[ 
e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - 
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.6.40.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 315 vs. \(2 (155 ) = 310\).

Time = 0.68 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.65

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -2 B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+2 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-\sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a \right )}{2 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \sqrt {i a}\, a \sqrt {-i a}}\) \(316\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (B \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a -2 B \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+2 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-\sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a \right )}{2 d \sqrt {\frac {1}{\tan \left (d x +c \right )}}\, \left (1+i \tan \left (d x +c \right )\right ) \tan \left (d x +c \right ) \sqrt {i a}\, a \sqrt {-i a}}\) \(316\)

input
int((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
-1/2/d*(a*(1+I*tan(d*x+c)))^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(B 
*(-I*a)^(1/2)*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^( 
1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a-2*B*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/ 
2)*(I*a)^(1/2)*(-I*a)^(1/2)+2*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*( 
1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2)-2^(1/2)* 
ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a 
*tan(d*x+c))/(tan(d*x+c)+I))*(I*a)^(1/2)*a)/(1/tan(d*x+c))^(1/2)/(1+I*tan( 
d*x+c))/tan(d*x+c)/(I*a)^(1/2)/a/(-I*a)^(1/2)
 
3.6.40.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 793 vs. \(2 (148) = 296\).

Time = 0.26 (sec) , antiderivative size = 793, normalized size of antiderivative = 4.13 \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)^(1/2),x, al 
gorithm="fricas")
 
output
-1/4*(2*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2) 
*a/d^2)*log(-4*((A - I*B)*a*e^(I*d*x + I*c) - (I*d*e^(2*I*d*x + 2*I*c) - I 
*d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1) 
)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-I*d*x - 
 I*c)/(I*A + B)) - 2*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-(-I*A^2 - 2 
*A*B + I*B^2)*a/d^2)*log(-4*((A - I*B)*a*e^(I*d*x + I*c) - (-I*d*e^(2*I*d* 
x + 2*I*c) + I*d)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x 
 + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1) 
))*e^(-I*d*x - I*c)/(I*A + B)) + 4*sqrt(2)*(I*B*e^(3*I*d*x + 3*I*c) - I*B* 
e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2* 
I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) - (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4 
*I*A^2 + 4*A*B - I*B^2)*a/d^2)*log(-16*(3*(2*I*A + B)*a^2*e^(2*I*d*x + 2*I 
*c) + (-2*I*A - B)*a^2 + 2*sqrt(2)*(a*d*e^(3*I*d*x + 3*I*c) - a*d*e^(I*d*x 
 + I*c))*sqrt((4*I*A^2 + 4*A*B - I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) 
 + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2* 
I*d*x - 2*I*c)/(2*I*A + B)) + (d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 
4*A*B - I*B^2)*a/d^2)*log(-16*(3*(2*I*A + B)*a^2*e^(2*I*d*x + 2*I*c) + (-2 
*I*A - B)*a^2 - 2*sqrt(2)*(a*d*e^(3*I*d*x + 3*I*c) - a*d*e^(I*d*x + I*c))* 
sqrt((4*I*A^2 + 4*A*B - I*B^2)*a/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sq 
rt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x ...
 
3.6.40.6 Sympy [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \left (A + B \tan {\left (c + d x \right )}\right )}{\sqrt {\cot {\left (c + d x \right )}}}\, dx \]

input
integrate((a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)**(1/2),x)
 
output
Integral(sqrt(I*a*(tan(c + d*x) - I))*(A + B*tan(c + d*x))/sqrt(cot(c + d* 
x)), x)
 
3.6.40.7 Maxima [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {\cot \left (d x + c\right )}} \,d x } \]

input
integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)^(1/2),x, al 
gorithm="maxima")
 
output
integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)/sqrt(cot(d*x + c 
)), x)
 
3.6.40.8 Giac [F]

\[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {\cot \left (d x + c\right )}} \,d x } \]

input
integrate((a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c))/cot(d*x+c)^(1/2),x, al 
gorithm="giac")
 
output
integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)/sqrt(cot(d*x + c 
)), x)
 
3.6.40.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+i a \tan (c+d x)} (A+B \tan (c+d x))}{\sqrt {\cot (c+d x)}} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{\sqrt {\mathrm {cot}\left (c+d\,x\right )}} \,d x \]

input
int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2))/cot(c + d*x)^(1/2 
),x)
 
output
int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(1/2))/cot(c + d*x)^(1/2 
), x)